

Wheeled Motion

This tool has been created to calculate the transmission of vehicles such as AGVs, AMRs, electric trolleys and forklifts, bridge cranes and gantries, transfer cars for concrete slabs, automated storage and retrieval systems, etc. These vehicles can be powered by one or more motors, including powering each wheel with its own independent motor.

Disclaimer

This tool has been created to assist engineers with the sizing of the different parts of the system. Calculations might not cover all corner cases. and results should always be checked by a qualified engineer. Under no circumstances shall we beheld responsible to any damages to persons or property due to correct or incorrect use of this tool, or to errors in it.

Total Mass

$$m_{load} = m_v + m [kg]$$

Bearing Friction Force

$$F_b = \mu_b \cdot m_{load} \cdot g \cdot \frac{d}{D} [N]$$

Weight Force

$$F_{w} = m_{load} \cdot g \cdot \cos\left(\frac{\gamma \cdot \pi}{180}\right) [N]$$

Wheel-Surface Rolling Resistance Force

$$F_{s} = \frac{2 \cdot b_{s} \cdot m_{load} \cdot \cos\left(\frac{\gamma \cdot \pi}{180}\right) \cdot g}{D} [N]$$

Total Resistive Force

$$F_T = F_w + F_b + F_s [N]$$

Linear Acceleration

$$a = \frac{v}{t_a} [m \cdot s^2]$$

Wheel-Surface Rolling Resistance Factor

ø 100 mm PUR on steel	bs ≈ 0.75 mm
ø 125 mm PUR on steel	bs ≈ 0.9 mm
ø 200 mm PUR on steel	bs ≈ 1.5 mm
ø 415 mm PUR on steel	bs ≈ 3.1 mm
Steel on steel	bs $\approx 0.5 \text{ mm}$
Plastic on steel	bs \approx 2 mm
Plastic on concrete	bs $\approx 5 \text{ mm}$
Hard rubber on steel	bs ≈ 7 mm
Hard rubber on concrete	bs $\approx 10 - 20 \text{ mm}$
Medium-hard rubber on concrete	bs ≈ 15 - 35 mm

Table based on experimental data

Request actual data for your wheels with the manufacturer

For PUR wheels, these factors show considerable variance depending on manufacturer, hardness, geometry and temperature

Axis Automation, SLU Avda de la Plata, 23-1 E-46013 Valencia - Spain Tel. +34-963 950 442 e-mail: info@servotak.com www.servotak.com

Servotak[®] PRECISION GEARBOXES

Constants		
Pi	$\pi \simeq 3.141592654$	
Acceleration of Gravity on Earth	$g = 9.80665 \frac{m}{s^2}$	
	Inputs	
Acceleration time	t_a [seconds]	
System Inclination	$\gamma \ [degrees]$	
Drive Wheel Diameter	$D \ [mm]$	
Drive Axle Diameter	<i>d</i> [<i>mm</i>]	
System Mass	$m_v [kg]$	
Load Mass	m [kg]	
Speed	$v \left[\frac{m}{s}\right]$	
Bearing Friction Coefficient	μ_b	
Wheel-Surface Rolling Resistance Factor	$b_{s} [mm]$	
Additional Reduction Ratio	i _{ex}	
Service Factor	KA	
System Efficiency	η_v	
Gearbox Efficiency	η_g	
Gearbox Moment of Inertia	$J_{g} \left[kg \cdot cm^{2} \right]$	
Max. Motor Speed During Cycle	$n_1 \ [rpm]$	
Motor Moment of Inertia	$J_{M} [kg \cdot cm^{2}]$	
Number of Motors	no _{tr}	

Acceleration Force

$$F_{acc} = a \cdot m_{load} [N]$$

Total Inertia as Seen by the Motor(s)

$$J_m = \frac{91.2 \cdot m_{load} \cdot \left(\frac{v}{n_1}\right)^2}{no_{tr}} [kg \cdot m^2]$$

Load to Motor Inertia Ratio

$$\Lambda = \frac{J_m}{\frac{J_m + J_g}{10000}}$$

Max. Wheel Rotational Speed

$$n_{2max} = \frac{v \cdot 1000 \cdot 60}{\pi \cdot D} [rpm]$$

Max. Wheel Rotational Speed

$\omega_{2max} =$	$n_{2max}\cdot\pi$	rad
	30	S

Required Continuous Motor Power

$$P_1 = \frac{F_T \cdot v}{1000 \cdot \eta_v \cdot \eta_g \cdot no_{tr}} [kW]$$

Required Acceleration Motor Power

$$P_{1max} = \frac{\left(F_T + F_{acc}\right) \cdot v}{1000 \cdot \eta_v \cdot \eta_g \cdot no_{tr}} \ [kW]$$

Ideal Gearbox Ratio

$$i = \frac{n_1}{n_2 \cdot i_{ex}}$$

Required Acceleration Torque (of each Gearbox)

$$T_{2a} = \frac{P_{1max} \cdot 9550}{n_2 \cdot i_{ex}} [N \cdot m]$$

Required Acceleration Torque Adjusted for Service Factor (of each Gearbox)

$$T_{2aKA} = T_{2a} \cdot KA \ [N \cdot m]$$

Required Motor Torque

$$T_m = \frac{T_{2a}}{i} [N \cdot m]$$

Required Output Torque (of each Gearbox)

$$T_2 = \frac{P_1 \cdot 9550}{n_2 \cdot i_{ex}} \left[N \cdot m \right]$$

Required Output Torque Adjusted for Service Factor (of each Gearbox)

$$T_{2KA} = T_2 \cdot KA \left[N \cdot m \right]$$